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Here the fun begins. Standard options such as calls and forwards are well
established. They have liquid markets, and may be traded on an exchange.
Their prices are fairly well determined and margins are competitive. This
gives an incentive to develop more complex instruments either to extend a
bank’s product range or to meet the hedging and speculative needs of its
clients.

Such intricate contracts are labelled exotics, and are often grown and
priced in the hothouse of quantitative analysis. But the principles of pricing
and hedging exotics are exactly the same as those for basic options. The
actual calculations may be more involved, but the methodology remains the
same. We begin with a class of exotics which are as computationally easy
as the simplest call option.

Terminal-value exotics

If the value of the exotic, maturing at time 7', depends only on the price
of the underlying security at that time, then life is straightforward. The
price of the option at time ¢, paying off f(St) at maturity T, is

V, = e "T=OEq (f(ST) | 7)),

where interest rates are constant at r and Q is the measure under which
e~ "S; is a Qmartingale. Under the Black-Scholes model, or any other
Markovian price process model, the price V; will only depend on the current
price of the stock.

Lookbacks and barriers

Both these families of exotics depend on the minimum or maximum of
the underlying stock price. Let the minimum process S, be

S«(t) =min{S, : 0 < u <t}
and the maximum S* be

S*(t) =max{S,:0<u <t}
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These are both continuous monotone random processes (S, is decreasing, S*
increasing), both starting at Sp.
A simple lookback call gives the right to buy a unit of stock at time T for
a price equal to the minimum achieved by the stock up to time T'. That is,
the payoff is
X = S7 — S.(T).

Barrier options give some right, such as a call option, which can only be
exercised if the stock has crossed a preset barrier level at some time before
maturity. Other flavours are only exercised if the stock does not cross the
barrier. A ‘down-and-in’ call on a stock pays off (St — k)T only if the stock
crossed the level ¢ (where ¢ is below Sp) some time before time 7. The payoff
is

X =I(S.(T) <¢)(Sr—k)".

This expression works because, given S; is a continuous process, the stock
has crossed the line ¢ at some time before 7' if and only if the minimum
value of the stock up to time T is less than or equal to ¢. So we can rewrite
the barrier condition as the indicator function I(S.(T) < ¢).

Other varieties include the lookback put (with payoff S*(T") — St), the
‘down-and-out’” barrier (payoff factor I(S.(T) > ¢)), and similar ‘up-and-
in’ and ‘up-and-out’ barriers. All of these payoffs are functions only of the
terminal-value price St and one of the minimum and maximum prices S,(7T)
and S*(T'). The price of such an option X, as usual, is given abstractly by
the formula

Eg (e "' X).

To use this formula, all we need is the joint distribution, under the martingale
measure Q, of (St,S.(T)) and of (S, S*(T)).

The Reflection Principle

Suppose we have a Black-Scholes world where W; is P-Brownian motion
and
S; =Sy eXp(O'Wt + ut).

Suppose that 1 happens to be exactly zero. Then in this case

St = S() eXp(O'Wt),
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and the minimum of the stock S, Si(¢) is the same as the exponential of the
minimum of W, in that

S.(t) = So exp(aW. (1)).

Because the function exp(-) is one-to-one and increasing, the process S; can
hit a particular level ¢ if and only if the process W; hits a corresponding
level (equal to log(e/Sg)). Similarly Sy achieves a minimum value of ¢ if and
only if W, achieves a corresponding minimum value.

The problem of finding the distribution of (S, S«(T")) has been trans-
formed into finding that of (Wy, W,.(T')), a problem which has been solved
in probability theory.

The Reflection Principle
P(Wr € dy; W (T) <b) =pr(0,2b—y)dy,  y>b,

where b is negative and pr(z,y) is the Brownian transition density

pr(z,y) = \/21—T exp (=55 (y — 2)%).

™

This is true because the probability that W goes from 0 to y and crosses
the line at height b is the same as the probability that W goes from 0 to
2b — y (the image of y reflected in the line b).
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Figure 4.1: A random walk and its reflection in the line at height —7

There is a complete correspondence between paths from 0 to y which cross
b, and paths from 0 to 2b— y. Reflect the path in the line b at all times after
it first hits.
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In full

0,y)d if y <D,
P(W; € dy; W*(T)gb):{pT( y)dy ify

pr(2b,y)dy if y > b.

This, of course, only works under our original condition that g = 0, which
will not hold in general for either the original real world measure or the
martingale measure. We can, however, use our C-M-G technology not only
to switch to the martingale measure, but also to switch temporarily to the
p = 0 measure.

Finding the martingale measure probabilities

If Q is the martingale measure, then
S = So exp(aWt + (r — %02)75),

where W really is Q-Brownian motion. Then there is an equivalent measure
P such that
W, =W, + o (r — o)t

is P-Brownian motion, so that under PP

St = S() exp(aWt).

The change of measure factor is

d! .
% = exp(aWr + $a*T) = exp(aWr — $a°T),

where a is o=!(r — 302). Very conveniently this change of measure only

depends on the terminal value of the process Wr.

By property (i) of the Radon-Nikodym derivative in chapter three, the
martingale measure @Q-probability of the event {Wy € dy; W, (T) < b}, will
be the P probability of that event multiplied by dQ/dP evaluated at Wy = y.
Using the algebraic identity that

eay_%a2TpT($7y) = e“pr(z + aT,y), for all z,
we find that
pT(a’T7 y) dy if ) < b7
QWr edy: WT)<B) =1 _
pr(2b+aT,y)dy ify > 0.
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Or in terms of densities (for b negative),

2ab

QWr € dy: W.(T) € db) = 25

T ly — 2b| pr(2b + aT,y)dy db, fory > b.

Exactly the same formula holds for W*, except that b is positive and y must
be less than b. We can now calculate the price of any option which depends
just on the terminal stock value and either the minimum or the maximum.
For instance, the price now of an option which pays off X = g(St, S.(T)) at
time T is

Vb — ]EQ(e—T‘TX)

0 o0
= e_’"T/ / g(Soe"y, Sge"b) QW € dy; Wi (T) € db).
b=—oc0 Jy=>b

Example — Down-and-In Call Option

Under the Black-Scholes model of X; = Xgexp(eW; + ut), where W, is
Brownian motion under the real world measure, there is a new measure P
with Brownian motion W; = W, + (u/0)t, under which S; = Sy exp(cW;).

We can now price a down-and-in call with payoff

X = (St — k) I(S(T) < ¢),
where ¢ is less than k. We can rewrite X, using S; = S exp(cW}), as
X = (Soe”™T — k) TT(W(T) < Llog £).
Writing a for o~ (r — $0?), b for =" log &, and yo for o' log SL’O, then

V= Bo(e ) = [ (S0e — KW € dys W(T) <)

Yo

Using the expression above for the -probability, this integral can be evalu-
ated as

Vo=e T <£>2T/021 po(l8rtioT i+’ o (08 E — 20T ¥ —10°T
0 So ovT T ’

where F' is given the value e"T¢?/S,. This is just the Black-Scholes formula
along with a multiplying correction factor and the forward price replaced by
F' as given by the formula.
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Example — Lookback Call

Under the same model as above, this option pays off
X =857 — S.(T)
at maturity 7. Its value now is

Vo=Eg(e ""'X) =Eg(e ""'Sr) — Eg (e ""S.(T)).
The first of the two terms on the right is just Sy, as e~ "S; is a Q-martingale.
To calculate the second term S.(T") = Spexp(cW,(T)), all we need is the
distribution of W, (T), which is given by integrating the appropriate line
above over y. We get that

QW.(T) <b) =@ <1’—T;T> L e <b :L/%T> |

where a = 0~ 1(r — $02). Then Vj} is equal to:

log £ + 1o2T log L — 152T
T [(4a)pd [ 25200 (1 _0)5d [ eS0T ) R
oVT oVT

where a = o2 /2.

Double barriers

Some payoffs may involve all three prices — St, S.(T), and S*(T'). An
example of this is a double barrier call option struck at k£ which pays off only
if the stock never goes below level ¢; and never goes above level ¢;. That is

X = (St — k)t I(e; < S.(T); S*(T) < c2).

The same principles apply as before. It is helpful to have a generalised
reflection principle, which says that for W a P-Brownian motion, with W, =
0,

]P’(WT Edy; a <W.(T); WH(T) < b)
= Z{pﬂ?n(a —b),y) —pr(2n(b—a),y — 2a)} dy.

nezZ

This can be converted into a probability simply by multiplying it by the
change of measure factor dQ/dP = exp(ay — +a>T), where a = o~ (r — 10?).




